Главная
 

Энергосберегающие лампы

Принцип действия.

  Колба энергосберегающей лампы представляет собой запаянную с 2 сторон трубку, заполненную парами ртути и аргона. Изнутри поверхность трубки покрыта слоем люминофора. В двух противоположных концах трубки расположены электроды.

Принцмп действия

  Электроды энергосберегающей лампы представляют собой тройную спираль, покрытую оксидным слоем. Именно этот слой придает электродам их свойства создавать поток электронов (термоэлектродная эмиссия).
  Чаще всего в энергосберегающих лампах применяются трехполосные люминофоры – это создает оптимальное соотношение хорошей цветопередачи и хорошей световой отдачи. Реже, для улучшения цветопередачи применяют пятиполосные люминофоры, т.к. это приводит к значительному увеличению стоимости лампы.
  Как же работает колба? При подачи напряжения на электроды, через них начинает течь ток прогрева. Этот ток разогревает электроды до начала термоэлектродной эмиссии. При достижении определенной температуры поверхности, электрод начинает испускать поток электронов. При этом электрод, который испускает электроны, называется катодом, а электрод, который принимает анодом. Электроны, сталкиваясь с атомами ртути, вызывают ультрафиолетовое излучение (УФ-излучение), которое, попадая на люминофор, преобразовывается в видимый свет. Процесс столкновения потока электронов с атомами ртути называется ударной ионизацией. Электроны сталкиваясь с атомами ртути выбивают с их орбиты крайний электрон, превращая молекулу ртути в тяжелый ион. Если электроны движутся встречно электрическому полю, вектор которого направлен от анода к катоду, ионы двигаются по направлению вектора электрического поля. Т.о. как только электрод перешел в режим катода его начинают бомбардировать тяжелые ионы ртути, разрушая оксидный слой. Частицы оксидного слоя вступают в реакцию с газом, которым заполнена колба, сгорают и оседают на колбе вблизи электрода. Именно по этому нельзя использовать постоянное напряжение для питания КЛЛ, т.к. один электрод будет всегда анодом, а другой катодом, а значит последний будет разрушаться в два раза быстрее. Оксидный слой значительно снижает сопротивление электрода, а значит при его разрушении сопротивление электрода растет. Разрушение электродов также увеличивает износ элементов балласта.
  Визуально конечная стадия процесса разрушения электродов выглядит так. Энергоберегающая лампа запускается с сильно заметным мерцанием. Световой поток заметно увеличивается. В течение незначительного времени энергосберегающая лампа выходит из строя.
  В принципе в процессе работы в колбе происходит достаточно интенсивное, хаотичное движение электронов и ионов. Поэтому слой люминофора тоже подвержен разрушению и с течением времени световой поток лампы снижается. Нормой считается падение светового потока не более чем на 20% за 2000ч.
  Из-за того что применяют трехполосный люминофор, свет который излучают энергосберегающие лампы имеет, так называемый, линейчатый спектр. Лампа накаливания имеет сплошной спектр (именно поэтому многие считают спектр ламп накаливания более приятным для глаз, чем спектр энергосберегающих ламп), но с полным отсутствием части синей области спектра и сильным смещением в красную область спектра. Некоторым людям может не нравиться свет с линейчатым спектром, но это чисто субъективное мнение и зависит от особенностей строения человеческого глаза.
  Стоит отметить что в колбе применяются пары ртути, а ртуть является очень токсичным веществом. Но с другой стороны, ртути в колбе содержится крайне мало (не более 3мг, что в сотни раз меньше чем в бытовом градуснике).
  Газ внутри колбы находится под очень низким давлением и незначительное изменение температуры окружающей среды приводит к изменению давления внутри колбы и как следствие к снижению светового потока. Для уменьшения степени влияния температуры окружающей среды, некоторые производители применяют вместо ртути амальгаму (соединение ртути с металлом), она делает световой поток более стабильным.

Цветовуя температура излучаемого света:
●    2700К «теплый белый»
●    4200К «холодный белый»
●    6400К «дневной белый»
 
«Теплый белый» свет соответствует цвету света обычной лампы накаливания (желтоватый). Лампы такой цветовой температуры лучше всего подходят для использования дома. 

«Холодный белый» свет не имеет тональной окраски. Такие лампы наиболее подходят для освещения офисов и торговых помещений.

Лампы цветовой температуры «дневной белый» дают свет голубоватого оттенка. Эти лампы чаще всего используют для освещения складских и производственных помещений, подъездов жилых домов и для наружного освещения.


Балласт.

Пускорегулирующий аппарат или балласт это светотехническое изделие, с помощью которого осуществляется питание газоразрядных ламп от электрической сети, обеспечивающее необходимые режимы зажигания, разогрева и работы газоразрядных ламп.

Балласт

Основные функциональные элементы балласта:
– предохранитель;
– выпрямитель;
– помехозащитный фильтр;
– ВЧ-генератор;
– пусковой контур;
– РТС;
– емкостной фильтр питающей сети.

  Балласт представляет собой достаточно простое электронное устройство, построенное на активных элементах, принцип действия которого описан ниже.
  Основным элементом электронного балласта является ВЧ-генератор, а точнее блокинг-генератор с трансформаторной положительной обратной связью. Основным элементом генератора являются два транзистора выполняющие функцию ВЧ-ключей.
  Запускается ВЧ-генератор с помощью схем запуска на динисторе или с помощью добавления в схему запускающего электролитического конденсатора. Стоит отметить, что применение схемы запуска на динисторе значительно повышает надежность балласта, но приводит к увеличению его стоимости. Схема запуска на электролитическом конденсаторе является наименее надежной (т.к. срок службы электролита ограничен количеством циклов заряда/разряда) и устаревшей, в такой ситуации спасает применение высококачественных электролитов.
  Основное назначение генератора – это преобразование постоянного напряжения в переменное напряжение 320В 50КГц (значения напряжения и частоты зависят от производителя, мощности лампы и конструкции балласта). Такое напряжение снижает износ электродов и устраняет пульсации светового потока (стробоскопический эффект).
  Постоянное напряжение поступает на вход генератора с двухполупериодного выпрямителя, реализованного на 4 диодах. После выпрямителя, форма постоянного напряжения далека от идеальной и имеет значительные пульсации. Для уменьшения этих пульсаций применяют емкостной фильтр в виде электролитического конденсатора. Важен правильный выбор емкости этого электролита. Чем выше его емкость, тем лучше он сглаживает пульсации, но тем больше вероятность мерцания лампы при работе с выключателем с подсветкой. Чем меньше емкость, тем хуже он сглаживает пульсации и тем меньше вероятность мерцания при работе с выключателем с подсветкой. Так, например для ЭСЛ мощностью 20Вт, оптимальной является емкость электролита 4,7мкФ. Стоит сказать несколько слов о том, почему происходит мерцание при работе с выключателем с подсветкой. В выключенном состоянии через выключатель течет небольшой ток утечки. Этот ток будет заряжать электролит емкостного фильтра примерно до 30В, как только напряжение на электролите превысит это значение, произойдет срабатывания генератора и кратковременная вспышка лампы.
  Так как генератор вырабатывает ВЧ-напряжение (50КГц), то необходимо исключить вероятность попадания ВЧ-помех в питающую сеть. Для этого применяется помехозащитный фильтр. Он состоит из катушки индуктивности и конденсатора.
  Напряжение с ВЧ-генератора, через пусковой контур (ПК) поступает на выводы электродов.

Пусковой контур

ПК необходим для создания высокого напряжения запуска лампы. Но подавать напряжение на плохо разогретые электроды недопустимо, т.к. это ускоряет процесс разрушения электродов. Для обеспечения принудительного прогрева электродов служит позистор РТС (терморезистор с положительным температурным коэффициентом). Он обеспечивает задержку запуска лампы 2-3с.
  Процесс запуска энергосберегающей лампы происходит так. В момент подачи напряжения на лампу, запускается ВЧ-генератор. Он начинает вырабатывать ВЧ-напряжение. С ВЧ-генератора напряжение поступает на ПК. Через электроды и РТС начинает течь ток прогрева. Пусковой дроссель накапливает энергию. Для создания напряжения запуска (примерно 1000В) необходимо, чтобы контур вошел в резонанс с ВЧ-генератором. Холодный РТС шунтирует пусковой контур и не дает ему войти в резонанс. Но так как через РТС протекает ток прогрева, температура РТС начинает расти, сопротивление соответственно тоже растет. В некоторый момент сопротивление РТС становится настолько высоким, что он перестает шунтировать пусковой контур. К этому моменту электроды уже достаточно прогрелись. ПК входит в резонанс с ВЧ-генератором и происходит скачек пускового напряжения создающий разряд в колбе лампы. Происходит запуск лампы. Разогретые электроды и РТС имеют достаточно большое сопротивление, а сопротивление ионизированного газа достаточно мало и ток начинает течь через разряд в колбе. Колба шунтирует пусковой контур, и он выходит из резонанса с ВЧ-генератором. Балласт переходит в режим рабочего напряжения (режим поддержания разряда) примерно 320В.
  Как я уже отмечал ранее, применение РТС значительно снижает износ электродов и увеличивает срок службы лампы. Применение РТС является личным выбором каждого производителя, но без РТС лампа более 6000ч не прослужит.
  Стоит отметить еще один важный элемент балласта – предохранитель. Из-за некачественных сборки или компонентов возможно возникновение короткого замыкания (КЗ) или возгорание энергосберегающей лампы. Предохранитель делает энергосберегающие лампы пожаробезопасными и защищает питающую сеть от КЗ. Применение предохранителя является дополнительной но не основной мерой безопасности. Основной мерой безопасности является обеспечение высокого качества монтажа и применения качественных компонентов.











Источник: http://www.svetila.ru/?action=article&id=9&page=1&rid=0

Энергосберегающие лампы
Принцип действия

Ремонт энергосберегающих ламп

Схемы энергосберегающих ламп

Питание ламп дневного света (ЛДС)

Термисторы PTC для энергосберегающих ламп



1). Электрическое поле Земли - источник энергии.

2). Ветродвигатель для ветряка - 1

3). Ветродвигатель для ветряка - 2

4). Получение электрической энергии - 1














Рейтинг@Mail.ru         



Hosted by uCoz